ОБЪЕКТКОННЕКТОР

Мультипротокольный сервис приема и обработки сообщений телематических устройств

Описание

Руководство по установке, настройке и использованию сервиса

Содержание

Описание работы сервиса	2
Запуск сервиса	3
Структура рабочей директории	3
Конфигурация	3
Запуск	3
Программный интерфейс взаимодействия с сервисом	4
Запрос сообщений в реальном времени	4
Пример запроса	5
Пример ответа сервера	5
Отправка команды на устройство	6
Пример запроса	6
Пример ответа сервера	6
Система контроля работы сервиса	7
Приложение А. XSD-схема сообщений в XML-формате	9
Пример сообщения	9
Приложение Б. JSON-схема сообщений в JSON-формате	11
Пример сообщения	12
Приложение В. Структура сообщений в ТЕХТ-формате	14
Пример сообщения	14
Приложение Г. Основные параметры унифицированного сообщения	15
Приложение Д. Дополнительные параметры сообщений устройств типа Navtelecom	16
Приложение E. Дополнительные параметры сообщений устройств типа Azimuth	18
Приложение Ё. Дополнительные параметры сообщений устройств с протоколом EGTS	20

Описание работы сервиса

ОбъектКоннектор — кроссплатформенный мультипротокольный сервис, предназначенный для приема и обработки данных от телематических устройств (GPS, ГЛОНАСС оборудования). Все полученные от устройств сообщения обрабатываются согласно их протоколу, приводятся к унифицированному сообщению и выдаются онлайн по http-запросу в XML, JSON или текстовом формате.

На данный момент сервис поддерживает все устройства серий <u>CMAPT</u> и <u>CИГНАЛ</u> российской компании <u>Navtelecom Telematics Systems</u> и устройства семейства <u>Азимут</u> российского производителя оборудования <u>OOO «Ратеос»</u>, а также любые другие устройства, работающие по протоколу EGTS (ERA GLONASS Telematics Standard), разработанному <u>Минтранс РФ</u>.

Запуск сервиса

Для работы и запуска сервиса необходимо установить <u>OpenJDK</u> или <u>Liberica JDK 8</u>, задать в переменных среды окружения переменные JAVA_HOME (указывает на каталог установленной JDK) и Path (указывает на исполняемый файл java).

Структура рабочей директории

config	Каталог с конфигурационными файлами приложения
config.properties	Конфигурационный файл приложения ОбъектКоннектор
log4j2.xml	Конфигурационный файл логирования Log4j2
lib	Каталог со вспомогательными библиотеками
log	Каталог с лог-файлами работы приложения
CobraConnector-2.0.jar	Исполняемый файл приложения ОбъектКоннектор

Конфигурация

Параметры работы приложения задаются в конфигурационном файле config/config.properties

Параметр	Описание
device.navtelecom.port	Порт, на который устанавливают соединения устройства типа Navtelecom
device.azimuth.port	Порт, на который устанавливают соединения устройства типа Azimuth
device.egts.port	Порт, на который устанавливают соединение устройства с EGTS
device.upload.dir	Путь к каталогу, в который будут сохраняться принятые файлы
monitoring.server.port	Порт, по которому доступен сервис контроля работы коннектора
monitoring.server.key	АРІ-ключ для доступа к сервису контроля работы коннектора
message.server.port	Порт, по которому доступен онлайн-сервис обработанных сообщений
message.server.key	АРІ-ключ для доступа к онлайн-сервису обработанных сообщений

Запуск

В OC Windows приложение запускается из командной строки:

java -jar -Dlog4j.configurationFile=file:config/log4j2.xml CobraConnector-2.0.jar

Программный интерфейс взаимодействия с сервисом

Сервис предоставляет АРІ, посредством которого можно получать в реальном времени уже обработанные данные от телематического оборудования и отправлять команды на устройства.

API сервиса работает по протоколу HHTP и представляет собой набор GET-запросов с определенными параметрами.

Запрос сообщений в реальном времени

URL:

http://{server.host}:{message.server.port}/?key={message.server.key}&format={format}&unitType={type},

где

{server.host} – адрес сервера, на котором запущен сервис

{message.server.port} – значение соответствующего параметра из config.properties

{message.server.key} – значение соответствующего параметра из config.properties

{format} – формат предоставления данных, допустимые значения: XML, JSON, TEXT

{type} – тип устройств, от которых нужно передавать сообщения, при отсутствии параметра в запросе будут передаваться сообщения от всех типов устройств

Метод: GET

Параметры заголовка запроса:

Connection: keep-alive

Соединение должно оставаться активным до тех пор, пока программный клиент хочет получать данные (сервер указывает keep-alive в своём HTTP-заголовке).

В ответ сервер будет в реальном времени выдавать поток сообщений. Структура сообщения зависит от запрашиваемого формата. Разделитель между сообщениями – символы \r\n (0x0D 0x0A).

XML-формат

Каждое сообщение в XML-формате представляет собой документ, соответствующий XSD-схеме (см. <u>Приложение A</u>).

JSON-формат

Каждое сообщение в JSON-формате представляет собой документ, соответствующий JSON-схеме (см. Приложение Б).

ТЕХТ-формат

Описание структуры сообщений в ТЕХТ-формате приведено в Приложении В.

Описание основных параметров унифицированного сообщения – в Приложении Г.

Описание дополнительных параметров сообщений устройств типа Navigator – в <u>Приложении Д.</u>

Описание дополнительных параметров сообщений устройств типа Azimuth – в <u>Приложении E</u>.

Описание дополнительных параметров сообщений устройств с протоколом EGTS – в <u>Приложении Ё</u>.

Пример запроса

Request URL

http://127.0.0.1:7070/?key=60bdf29c-f27d-11ea-adc1-0242ac120002&format=JSON

Request Method

GET

}

Request Headers

Connection: keep-alive

Content-Type: application/json; charset=UTF-8

Пример ответа сервера

Response Headers

Connection: keep-alive

Content-Type: application/json; charset=UTF-8

```
Response
{
  "unitType": "Azimuth",
  "serialNumber": "1598",
  "sourceMessage":
"00ff009c00030034000060034dafaf601644683060240119590000002b00880089400000004000
0000400000000a1001860000008006007fld61e2000fa00012018c0200929200000200000",
  "unitTS": 1600330205405,
  "gpsTS": 1600330200001,
  "gpsLat": 55.704826,
  "gpsLng": 37.596977,
  "gpsAlt": 0,
  "gpsSat": 10,
  "glonassSat": 1,
  "gpsSpeed": 0,
  "gpsCourse": 86,
  "gpsValid": true,
  "parameters": [
      "name": "mcc",
      "type": "NUM",
      "value": "250"
    },
      "name": "out3",
      "type": "NUM",
      "value": "0"
    },
      "name": "c3",
      "type": "NUM",
      "value": "0"
    },
  ]
```

Отправка команды на устройство

URL:

http://{server.host}:{message.server.port}/command?key={message.server.key},

где

{server.host} – адрес сервера, на котором запущен сервис

{message.server.port} – значение соответствующего параметра из config.properties

{message.server.key} – значение соответствующего параметра из config.properties

Метод: POST

Параметры тела запроса:

unitType={type}&serialNumber={imei}&cmd={text}

{type} – тип устройства, на которое отправляется команда

{imei} – серийный номер устройства, на которое отправляется команда

{text} – текст команды, согласно протоколу устройства

В ответ сервер вернет соответствующий код состояния (HTTP status code) и текст ошибки (если была).

Возможные статусы:

Код	Код Описание		
200	Успешно		
400	Неверный запрос		
403	Доступ запрещён		
600	Отсутствует необходимый параметр		
601	Некорректный серийный номер устройства		
602	Устройство не на связи		
603	ТСР-ошибка отправки команды		
604	Устройство не готово принять команду		

Пример запроса

Request URL

http://127.0.0.1:7070/command?key=60bdf29c-f27d-11ea-adc1-0242ac120002

Request Method

POST

Request Body

unitType=Azimuth&serialNumber=1590&cmd=(0000,status)

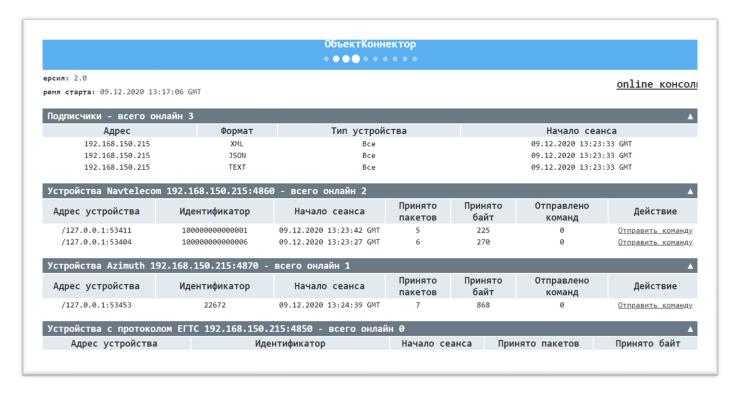
Пример ответа сервера

HTTP status code: 200

Response: OK

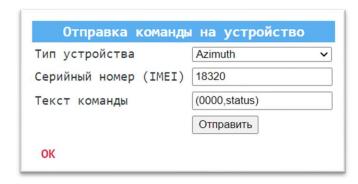
Система контроля работы сервиса

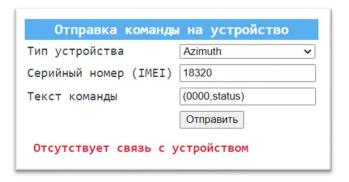
Сервис имеет веб-интерфейс онлайн-мониторинга работы приложения, контроля сессий подключенных устройств. Веб-интерфейс доступен по адресу:

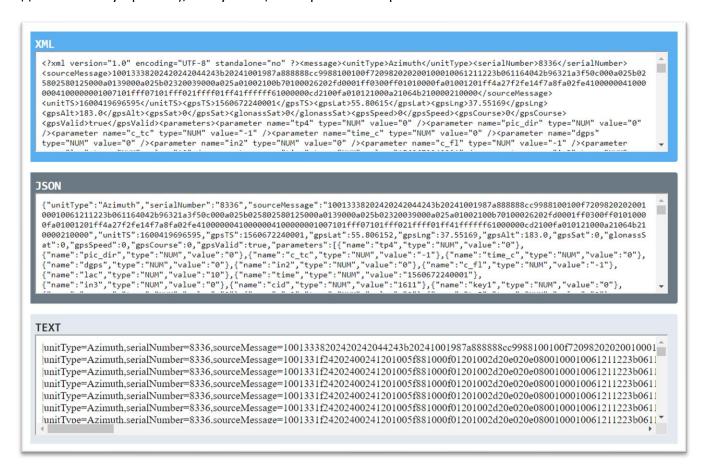

http://{server.host}:{monitoring.server.port}/?key={monitoring.server.key}&refresh={sec},

где

{server.host} – адрес сервера, на котором запущен сервис


{monitoring.server.port} — значение соответствующего параметра из config.properties {monitoring.server.key} — значение соответствующего параметра из config.properties {sec} — время обновления информации на странице в секундах


Пример: http://127.0.0.1:9090/?key=3d84ca2e-c237-4f32-8f84-49db387ee1d9&refresh=10


Раздел «Подписчики» содержит список всех программных клиентов, использующих API этого сервиса для получения сообщений от устройств. По каждому клиенту указан его ір-адрес, дата начала сессии, формат выходных сообщений и используемый фильтр по типу устройств.

Разделы «Устройства Navtelecom», «Устройства Azimuth» и «Устройства с протоколом EGTS» содержат списки всех активных сессий соответствующих типов устройств и подробную информацию по каждой сессии. На выбранное из списка устройство по ссылке «Отправить команду» можно отправить диагностический запрос:

По ссылке «online консоль» доступно окно с сообщениями (в различных форматах от всех подключенных устройств), поступающими в реальном времени:

Приложение A. XSD-схема сообщений в XML-формате

```
<xs:schema attributeFormDefault="unqualified" elementFormDefault="gualified"</pre>
xmlns:xs="http://www.w3.org/2001/XMLSchema">
  <xs:element name="message">
    <xs:complexType>
      <xs:sequence>
        <xs:element type="xs:string" name="unitType"/>
        <xs:element type="xs:string" name="serialNumber"/>
        <xs:element type="xs:string" name="sourceMessage"/>
        <xs:element type="xs:long" name="unitTS"/>
        <xs:element type="xs:long" name="gpsTS"/>
        <xs:element type="xs:float" name="gpsLat"/>
        <xs:element type="xs:float" name="gpsLng"/>
        <xs:element type="xs:float" name="gpsAlt"/>
        <xs:element type="xs:byte" name="gpsSat"/>
        <xs:element type="xs:byte" name="glonassSat"/>
        <xs:element type="xs:byte" name="gpsSpeed"/>
        <xs:element type="xs:integer" name="gpsCourse"/>
        <xs:element type="xs:boolean" name="gpsValid"/>
        <xs:element name="parameters">
          <xs:complexType>
            <xs:sequence>
              <xs:element name="parameter" maxOccurs="unbounded" minOccurs="0">
                <xs:complexType>
                  <xs:simpleContent>
                    <xs:extension base="xs:string">
                      <xs:attribute type="xs:string" name="name" use="optional"/>
                      <xs:attribute type="xs:string" name="type" use="optional"/>
                      <xs:attribute type="xs:string" name="value" use="optional"/>
                    </xs:extension>
                  </xs:simpleContent>
                </xs:complexType>
              </xs:element>
            </xs:sequence>
          </xs:complexType>
        </xs:element>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>
Пример сообщения
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<message>
      <unitType>Azimuth</unitType>
      <serialNumber>1598</serialNumber>
      <sourceMessage>00ff009c00030034000060034dafaf601644683060240119590000002b00880089
4000000040000004000000000001001860000008006007fld61e2000fa00012018c0200929200000200000
      </sourceMessage>
      <unitTS>1600330205405</unitTS>
```

```
ОБЪЕКТКОННЕКТОР
      <qpsTS>1600330200001
      <gpsLat>55.70483/
      <gpsLng>37.59698
      <gpsAlt>0.0</gpsAlt>
     <gpsSat>10/gpsSat>
      <glonassSat>1</glonassSat>
      <gpsSpeed>0</gpsSpeed>
      <gpsCourse>86</gpsCourse>
      <gpsValid>true/gpsValid>
      <parameters>
           <parameter name="mcc" type="NUM" value="250" />
            <parameter name="out3" type="NUM" value="0" />
            <parameter name="c3" type="NUM" value="0" />
            <parameter name="nav_des" type="NUM" value="3" />
           <parameter name="tp6" type="NUM" value="0" />
           <parameter name="tp3" type="NUM" value="24" />
           <parameter name="tpd3" type="NUM" value="0" />
            <parameter name="in3" type="NUM" value="0" />
           <parameter name="out2" type="NUM" value="0" />
            <parameter name="tpd8" type="NUM" value="0" />
           <parameter name="g open" type="NUM" value="0" />
           <parameter name="ext vcc" type="NUM" value="1" />
            <parameter name="sim" type="NUM" value="1" />
            <parameter name="pic dir" type="NUM" value="0" />
            <parameter name="c2" type="NUM" value="0" />
            <parameter name="mov" type="NUM" value="0" />
            <parameter name="g_short" type="NUM" value="0" />
            <parameter name="tp7" type="NUM" value="0" />
            <parameter name="spd lo" type="NUM" value="4" />
            <parameter name="c1" type="NUM" value="0" />
            <parameter name="c tc" type="NUM" value="0" />
           <parameter name="ign err" type="NUM" value="0" />
            <parameter name="tpd2" type="NUM" value="0" />
            <parameter name="tp5" type="NUM" value="0" />
            <parameter name="mnc" type="NUM" value="1" />
            <parameter name="ign" type="NUM" value="1" />
            <parameter name="tp2" type="NUM" value="0" />
            <parameter name="alarm" type="NUM" value="0" />
            <parameter name="tpd6" type="NUM" value="8" />
            <parameter name="time" type="NUM" value="1600330200001" />
            <parameter name="tpd7" type="NUM" value="0" />
            <parameter name="cid" type="NUM" value="2345" />
            <parameter name="dgps" type="NUM" value="0" />
           <parameter name="in1" type="NUM" value="1" />
            <parameter name="key1" type="NUM" value="0" />
            <parameter name="msg number" type="NUM" value="1" />
            <parameter name="tp1" type="NUM" value="0" />
            <parameter name="in2" type="NUM" value="1" />
           <parameter name="gsm_reg" type="NUM" value="1" />
           <parameter name="tp8" type="NUM" value="0" />
            <parameter name="lac" type="NUM" value="6336" />
            <parameter name="time c" type="NUM" value="1" />
            <parameter name="rf ev" type="NUM" value="0" />
           <parameter name="report_type" type="NUM" value="31" />
           <parameter name="key2" type="NUM" value="0" />
           <parameter name="out1" type="NUM" value="0" />
            <parameter name="tpd4" type="NUM" value="0" />
            <parameter name="acc" type="NUM" value="3" />
            <parameter name="tp4" type="NUM" value="0" />
     </parameters>
</message>
```

Приложение Б. JSON-схема сообщений в JSON-формате

```
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
  "unitType": {
   "type": "string"
  "serialNumber": {
   "type": "string"
  "sourceMessage": {
   "type": "string"
  "unitTS": {
   "type": "integer"
  "gpsTS": {
   "type": "integer"
  "gpsLat": {
   "type": "number"
  "gpsLng": {
   "type": "number"
  "gpsAlt": {
   "type": "integer"
  "gpsSat": {
   "type": "integer"
  "glonassSat": {
   "type": "integer"
  "gpsSpeed": {
   "type": "integer"
  "gpsCourse": {
   "type": "integer"
  },
  "gpsValid": {
   "type": "boolean"
  },
  "parameters": {
   "type": "array",
   "items": [
      "type": "object",
```

```
ОБЪЕКТКОННЕКТОР
     "properties": {
      "name": {
       "type": "string"
      },
      "type": {
       "type": "string"
      },
      "value": {
       "type": "string"
      }
     },
     "required": [
      "name",
      "type",
      "value"
   }
 }
 },
 "required": [
 "unitType",
 "serialNumber",
 "sourceMessage",
 "unitTS"
}
Пример сообщения
  "unitType": "Azimuth",
  "serialNumber": "1598",
  "sourceMessage":
"00ff009c00030034000060034dafaf601644683060240119590000002b008800894000000040000004000
000000a1001860000008006007fld61e2000fa00012018c0200929200000200000",
  "unitTS": 1600330205405,
  "qpsTS": 1600330200001,
  "gpsLat": 55.704826,
  "gpsLng": 37.596977,
  "gpsAlt": 0,
  "gpsSat": 10,
  "glonassSat": 1,
  "gpsSpeed": 0,
  "gpsCourse": 86,
  "gpsValid": true,
  "parameters": [
      "name": "mcc",
      "type": "NUM",
      "value": "250"
    },
      "name": "out3",
      "type": "NUM",
"value": "0"
    },
```

```
ОБЪЕКТКОННЕКТОР
       "name": "c3",
       "type": "NUM", "value": "0"
    },
       "name": "nav des",
       "type": "NUM",
       "value": "3"
    },
       "name": "tp6",
       "type": "NUM",
       "value": "0"
    } ,
       "name": "g open",
       "type": "NUM",
       "value": "0"
    },
       "name": "ext_vcc",
       "type": "NUM",
       "value": "1"
    },
       "name": "sim",
       "type": "NUM",
       "value": "1"
    },
     {
       "name": "pic_dir",
"type": "NUM",
       "value": "0"
    },
       "name": "g_short",
"type": "NUM",
"value": "0"
    } ,
     {
       "name": "tp7",
       "type": "NUM",
       "value": "0"
    } ,
       "name": "tpd1",
       "type": "NUM",
"value": "0"
    },
       "name": "tpd5",
       "type": "NUM",
       "value": "0"
  ]
```

}

Приложение В. Структура сообщений в ТЕХТ-формате

Каждое сообщение в TEXT-формате начинается с символа | (ASCII-код 0x7C) и завершается символами \r\n (ASCII-код 0x0D 0x0A). Основные параметры сообщения представлены в виде пар «ключ=значение», разделенных запятыми. Произвольные параметры представлены строкой, следующего формата:

p1_name:data_type:value; pN_name:data_type:value;

где **p1_name** – **pN_name** – названия параметров

data_type — тип значения параметра, допустимые значения: NUM — целое число, FLOAT- дробное число, STRING — строка

value – значение параметра

Пример сообщения

| unitType=Azimuth, serialNumber=1598, sourceMessage=00ff009c00030034000060034dafaf6016446
83060240119590000002b0088008940000000400000000000000001001860000008006007f1d61e2000fa
00012018c0200929200000200000, unitTs=1600330205405, gpsTs=1600330200001, gpsLat=55.70483, g
psLng=37.59698, gpsAlt=0.0, gpsSat=10, glonassSat=1, gpsSpeed=0, gpsCourse=86, gpsValid=true,
parameters=mcc:NUM:250; out3:NUM:0; c3:NUM:0; nav_des:NUM:3; tp6:NUM:0; tp3:NUM:24; tpd3:NUM:
0; in3:NUM:0; out2:NUM:0; tpd8:NUM:0; g_open:NUM:0; ext_vcc:NUM:1; sim:NUM:1; pic_dir:NUM:0; c2
:NUM:0; mov:NUM:0; g_short:NUM:0; tp7:NUM:0; tpd1:NUM:0; tpd5:NUM:0; spd_lo:NUM:4; c1:NUM:0; c
tc:NUM:0; ign_err:NUM:0; tpd2:NUM:0; tp5:NUM:0; mnc:NUM:1; ign:NUM:1; tp2:NUM:0; alarm:NUM:0; t
pd6:NUM:8; time:NUM:1600330200001; tpd7:NUM:0; cid:NUM:2345; dgps:NUM:0; in1:NUM:1; key1:NUM:
0; msg_number:NUM:1; tp1:NUM:0; in2:NUM:1; gsm_reg:NUM:1; tp8:NUM:0; lac:NUM:6336; time_c:NUM:
1; rf ev:NUM:0; report type:NUM:31; key2:NUM:0; out1:NUM:0; tpd4:NUM:0; acc:NUM:3; tp4:NUM:0;

Приложение Г. Основные параметры унифицированного сообщения

Параметр	Тип	Описание
unitType	String	Тип устройства, возможные значения Azimuth, Navtelecom, EGTS
serialNumber	String	Серийный номер устройства (IMEI)
sourceMessage	String	Текст исходного сообщения (НЕХ-дамп)
unitTS	Long	Дата и время устройства (мс с 1 января 1970г)
gpsTS	Long	Дата и время GPS (мс с 1 января 1970г)
gpsLat	Float	Географическая широта (градусы)
gpsLng	Float	Географическая долгота (градусы)
gpsAlt	Float	Высота над уровнем моря (м)
gpsSat	Byte	Количество видимых GPS-спутников
glonassSat	Byte	Количество видимых ГЛОНАСС-спутников
gpsSpeed	Byte	Скорость (км/ч)
gpsCourse	Integer	Направление движения (градусы)
gpsValid	Boolean	Валидность координат
parameters		Дополнительные параметры из сообщения, их набор зависит от типа устройства

Приложение Д. Дополнительные параметры сообщений устройств типа Navtelecom

Параметр	Тип	Описание
msg_type	STRING	Тип сообщения
msg_number	NUM	Номер сообщения
event_code	NUM	Код события
cmd_response	NUM	Признак, что сообщение является ответом на команду
status	NUM	Статус устройства (битовое поле)
modules_st	NUM	Статус функциональных модулей 1 (битовое поле)
modules_st2	NUM	Статус функциональных модулей 2 (битовое поле)
gsm	NUM	Уровень GSM
valid_nav	NUM	Состояние навигационного датчика GPS/ГЛОНАСС
sats	NUM	Количество спутников
mileage	NUM	Текущий пробег
val_positions_count	NUM	Количество точек расчета координат навигационным приемником
		с частотой один раз в секунду при наличии достоверных
		навигационных данных
pwr_ext	FLOAT	Напряжение на основном источнике питания
pwr_int	FLOAT	Напряжение на резервном источнике питания
engine_hours	FLOAT	Моточасы
lbs_time	NUM	Время последних данных полученных от LBS
cell_id	NUM	Идентификатор соты
lac	NUM	Код локальной зоны
mcc	NUM	Код страны, в которой находится базовая станция
mnc	NUM	Код сотовой сети
rx_level	NUM	Уровень принимаемого по данному каналу радиосигнала на входе
		в приёмник телефона. Измеряется в «децибеллах к милливатту»
cell_id1	NUM	Идентификатор соты 1
lac1	NUM	Код локальной зоны 1
mcc1	NUM	Код страны 1, в которой находится базовая станция
mnc1	NUM	Код сотовой сети 1
rx_level1	NUM	Уровень 1 принимаемого по данному каналу радиосигнала на
		входе в приёмник телефона. Измеряется в «децибеллах к
		милливатту»
cell_id2	NUM	Идентификатор соты 2
lac2	NUM	Код локальной зоны 2
mcc2	NUM	Код страны 2, в которой находится базовая станция
mnc2	NUM	Код сотовой сети 2
rx_level2	NUM	Уровень 2 принимаемого по данному каналу радиосигнала на
		входе в приёмник телефона. Измеряется в «децибеллах к
		милливатту»
in1	NUM	Текущее показание дискретного датчика 1
in2	NUM	Текущее показание дискретного датчика 2
in3	NUM	Текущее показание дискретного датчика 3
in4	NUM	Текущее показание дискретного датчика 4
in5	NUM	Текущее показание дискретного датчика 5
in6	NUM	Текущее показание дискретного датчика 6

ОБЪЕКТКОННЕКТОР

NUM	Текущее показание дискретного датчика 7
NUM	Текущее показание дискретного датчика 8
NUM	Текущее состояние выхода 1
NUM	Текущее состояние выхода 2
NUM	Текущее состояние выхода 3
NUM	Текущее состояние выхода 4
NUM	Текущее состояние выхода 5
NUM	Текущее состояние выхода 6
NUM	Текущее состояние выхода 7
NUM	Текущее состояние выхода 8
NUM	Напряжение на аналоговом входе 1
NUM	Напряжение на аналоговом входе 2
NUM	Напряжение на аналоговом входе 3
NUM	Напряжение на аналоговом входе 4
NUM	Напряжение на аналоговом входе 5
NUM	Напряжение на аналоговом входе 6
NUM	Напряжение на аналоговом входе 7
NUM	Напряжение на аналоговом входе 8
NUM	Напряжение на аналоговом входе 8
	NUM

Приложение E. Дополнительные параметры сообщений устройств типа Azimuth

Параметр	Тип	Описание
msg_type	STRING	Тип сообщения
msg_number	NUM	Номер сообщения
nav_des	NUM	Тип навигационного решения
time_c	NUM	Признак корректности времени
mov	NUM	Датчик движения (есть / нет)
ign_err	NUM	Зажигание не подключено (да / нет)
ign	NUM	Статус зажигания (есть / нет)
ext_vcc	NUM	Наличие внешнего питания (есть / нет)
gsm_reg	NUM	Статус GSM регистрации (есть / нет)
g_open	NUM	GPS антенна не подключена (да / нет)
g_short	NUM	Короткое замыкание GPS антенны (да / нет)
sim	NUM	Статус SIM карты (есть / нет)
in1	NUM	Текущее показание дискретного датчика 1
in2	NUM	Текущее показание дискретного датчика 2
in3	NUM	Текущее показание дискретного датчика 3
out1	NUM	Текущее состояние выхода 1
out2	NUM	Текущее состояние выхода 2
out3	NUM	Текущее состояние выхода 3
alarm	NUM	Признак тревоги
dgps	NUM	Признак дифференциального режима работы GPS приемника
acc	NUM	Градация напряжения аккумулятора
rf_ev	NUM	событие считывателя RFID
key1	NUM	Признак обнаружения ключа N1 (iButton) заданного в профиле
key2	NUM	Признак обнаружения ключа N2 (iButton) заданного в профиле
pic_dir	NUM	Директория записи фотоснимка
ain1	NUM	Аналоговый вход 1
ain2	NUM	Аналоговый вход 2
ain3	NUM	Аналоговый вход 3
c1	NUM	Счетчик (Частотомер) 1
c2	NUM	Счетчик (Частотомер) 2
c3	NUM	Счетчик (Частотомер) 3
f1	NUM	Значение 12 битного датчика уровня жидкости топлива (ДУЖ)
f2	NUM	Значение 12 битного датчика уровня жидкости топлива (ДУЖ)
f3	NUM	Значение 12 битного датчика уровня жидкости топлива (ДУЖ)
rfid	NUM	Уникальный код RFID карты
c_wt	NUM	CAN. Полное время работы двигателя в часах
c_ff	NUM	CAN. Полный расход топлива в литрах
c_fl	NUM	CAN. Уровень топлива в баке (в % либо литрах)
c_tc	NUM	САN. Температура двигателя в °C
c_pr	NUM	CAN Полный пробег транспортного средства
c_f	NUM	CAN. Флаги состояний транспортного средства
tp1	NUM	Датчики температуры 1
tp2	NUM	Датчики температуры 2

ОБЪЕКТКОННЕКТОР

tp3	NUM	Датчики температуры 3
tp4	NUM	Датчики температуры 4
tp5	NUM	Датчики температуры 5
tp6	NUM	Датчики температуры 6
tp7	NUM	Датчики температуры 7
tp8	NUM	Датчики температуры 8
btn1	NUM	Код ключа iButton N3
btn2	NUM	Код ключа iButton N4
pict	NUM	Дата/Время создания фотоснимка
c_p1	NUM	CAN. Давление на ось 1, кг
c_p2	NUM	CAN. Давление на ось 2, кг
c_p3	NUM	CAN. Давление на ось 3, кг
tpd1	NUM	Дробное значение датчика температуры 1
tpd2	NUM	Дробное значение датчика температуры 2
tpd3	NUM	Дробное значение датчика температуры 3
tpd4	NUM	Д7обное значение датчика температуры 4
tpd5	NUM	Дробное значение датчика температуры 5
tpd6	NUM	Дробное значение датчика температуры 6
tpd7	NUM	Дробное значение датчика температуры 7
tpd8	NUM	Дробное значение датчика температуры 8
cell_id	NUM	Идентификатор соты
lac	NUM	Код локальной зоны
mcc	NUM	Код страны, в которой находится базовая станция
mnc	NUM	Код сотовой сети

Приложение Ё. Дополнительные параметры сообщений устройств с протоколом EGTS

Параметр	Тип	Описание
msg_number	NUM	Номер сообщения
move	NUM	Признак движения объекта
fromMemory	NUM	Признак сообщения из памяти
coordType	STRING	Тип определения координат: 2D-fix или 3D-fix
coordSystem	STRING	Тип используемой системы: «WGS-84» или «ПЗ-90.02»
mileage	NUM	Пробег
in1	NUM	Текущее показание дискретного датчика 1
in2	NUM	Текущее показание дискретного датчика 2
in3	NUM	Текущее показание дискретного датчика 3
in4	NUM	Текущее показание дискретного датчика 4
in5	NUM	Текущее показание дискретного датчика 5
in6	NUM	Текущее показание дискретного датчика 6
in7	NUM	Текущее показание дискретного датчика 7
in8	NUM	Текущее показание дискретного датчика 8
reason_code	NUM	Код события
reason_text	STRING	Название события
VDOP	NUM	Снижение точности в вертикальной плоскости
HDOP	NUM	Снижение точности в горизонтальной плоскости
PDOP	NUM	Снижение точности по местоположению
sat	NUM	Количество видимых спутников
nav_system	STRING	Используемые навигационные спутниковые системы
pwr_main	FLOAT	Значение напряжения основного источника питания
backup_battery	FLOAT	значение напряжения резервной батареи
int_battery	FLOAT	Значение напряжения внутренней батареи
nav_state	NUM	Состояние навигационного модуля
ext_power_used	NUM	Признак использования внешнего резервного источника питания
int_battery_used	NUM	Признак использования внутренней батареи
module_state_code	NUM	Код режима работы абонентского терминала
module_state_text	STRING	Название режима работы абонентского терминала